
www.manaraa.com

Page 1

SEAMAN: Implementing Process-Centered Software
Development Environments on Top of an Active

Database Management System

Dimitrios Tombros, Andreas Geppert, Klaus R. Dittrich

{tombros,geppert,dittrich}@ifi.unizh.ch

Technical Report 95.03

Institut für Informatik, Universität Zürich

Winterthurerstr. 190, 8057 Zürich

Switzerland

Abstract. The goal of the SEAMAN1 project is to provide a framework for
the efficient construction of customized process-centered software develop-
ment environments (PCDEs). SEAMAN consists of a meta-level where the
architecture of both the development environments and their process mod-
els can be described in a uniform way, and an operational level in which in-
stantiated PCDEs operate. The formalisms we use in the meta-level are
simple yet powerful and can be easily mapped onto mechanisms provided
by an active object-oriented database management system (aDBMS) serv-
ing as the underlying implementation platform. In this paper we present the
architecture of SEAMAN and the concepts used for the definition of soft-
ware development environments and their process models. Finally we de-
scribe how an aDBMS can be effectively used to implement this
framework.

1. SoftwareEngineering withActiveMechANisms

www.manaraa.com

Introduction and Motivation

 Page 2

1 Introduction and Motivation

The development of software systems is a complex task which involves the coordination

of various agents - human and computational - performing various more or less related ac-

tivities and operating on a large variety of artifacts among which complex dependencies

exist. Process-centered development environments (PCDEs) have been proposed to sup-

port this task [10]. An important consideration for PCDEs is that they must be flexible

enough to be used in various projects without imposing limitations on issues such as the

process used, guidelines to be followed, and constraints to be maintained among various

deliverables.

In PCDEs software artifacts are created and manipulated by services requested by the

environment users. It is still an open question how to integrate these services into a coher-

ent environment in a flexible way, particularly if services are provided by tools developed

independently from each other [5]. In other words, we face the problem of theappropriate

software architecture of integrated software development environments.

In the effort to cover all possible usage scenarios of PCDEs, usually a base system is

defined which provides a large set of potentially useful services to its users, as for example

in PCTE [18, 19]. This creates large systems which are difficult to overview and maintain

and causes substantial overhead when only a subset of the provided functionality (depend-

ing on factors such as the PM or the development context) is actually needed. Thus a fur-

ther problem ishow to provide a system offering the exact set of services needed in a

specific development context.

A software development project has to proceed according to predefined guidelines. In

PCDEsprocess models (PMs) describe these guidelines formally, allowing processes to be

enacted. A process engine executes the process program which coordinates the developers

involved and automates certain tasks such as the invocation of external tools. A repository

is used for storing information about the development process and the artifacts generated

(example projects that have followed this general approach are Adele [8], EPOS [14],

Marvel [4], Merlin [20], and SPADE [2]). The problem with this approach is that the

adaptability of the system is limited by the possibilities offered by the PM within a rela-

tively fixed architectural framework. In practice the structural and behavioral aspects of an

www.manaraa.com

Introduction and Motivation

 Page 3

architecture are interrelated and should be coordinated. In this respect, a third problem is

how to specify PMs so that they integrate well with the architecture of the PCDE, includ-

ing the underlying repository.

A way to achieve the required flexibility and power is by simplifying the task ofdevel-

oping customized PCDEs, optimized for use in a specific project or a group of similar

projects. Thus depending on the specific requirements imposed by an organizational or de-

velopment context, PCDEs satisfying exactly these requirements can be constructed and

used. This approach is advantageous both for large development organizations where a

large variety of development projects must be supported, and for PCDE vendors which can

provide different products according to customer needs.

Subsequently, we describe the SEAMAN approach, that as we shall see supports both

the construction of customized PCDEs and the modelling of the enacted processes in a co-

herent manner. The SEAMANmeta-level has a service-oriented view of PCDE architec-

tures which has also been used in standardization efforts [9, 17]. The meta-level provides

the framework for the definition, initialization and operation of specific PCDEs. Its prime

constituents are so calledbrokersused to model the architecture of PCDEs. These are

components responsible for providing a set ofservicesto their clients, thus achieving a

service-oriented integration [5]. Brokers allow the expression of structural, functional, and

behavioral aspects of PCDEs, component modularization and cooperation, and the integra-

tion of existing tools by using interface brokers. Thesame concepts are used for software

process modelling as a development process is described by the behavior of the brokers

participating in it.

In most PCDEs a database management system (DBMS) serves as an integrating com-

ponent based on a common schema describing development artifacts. These artifacts can

be stored and manipulated in the DBMS. We extend the integrating role of the DBMS by

implementing brokers and services (i.e., a PCDE instance) on top of anactive object-ori-

ented database management system (aDBMS). This allows us to implement both PCDEs

and their products in a uniform way. We also use the DBMS to provide further functional-

ity such as concurrent access to data, automatic recovery, etc.

www.manaraa.com

Service-Oriented Architecture

 Page 4

The contributions of SEAMAN are thus threefold. It introduces powerful formalisms to

describe the architecture and behavior of PCDEs in a simple and coherent manner, thereby

integrating system components and development processes. This is in contrast to other ap-

proaches where structure and behavior are described in conceptually different ways (e.g.

objects are used for structural description and a rule based formalism is used for process

description). In addition, it allows a flexible and efficient construction of customized

PCDEs providing the exact functionality needed for a specific development context. Final-

ly, the use of an aDBMS as a standard base component provides an integrating layer with a

powerful set of base services.

The organization of the paper is as follows: In Section 2 we present the concepts we use

to define the architecture of PCDEs. In Section 3 we discuss the architecture of the con-

struction framework SEAMAN and give an example of the use of the presented concepts.

In Section 4 we describe how an aDBMS is used to support various aspects of our work.

We then survey related work in Section 5 and summarizing in Section 6 we outline our fu-

ture work.

2 Service-Oriented Architecture

2.1 Architectural Reference Models

Services describe the functionality that has to be offered by an SDE. The advantage of a

service-oriented approach is that it provides a conceptual view of the required functional-

ity without being bound by any implementation. According to recently proposed reference

models [9, 17], an SDE is composed of different service groupings:

• Supportservices, which focus on tasks common to all users independently from

domain, activity or life-cycle phase (e.g. document processing, user communication).

• Project management, technical management andtechnical engineering services (e.g.

design and coding, project scheduling and tracking).

• Framework services, which provide the infrastructure for the development process (e.g.

object management, policy enforcement).

www.manaraa.com

Service-Oriented Architecture

 Page 5

The first two kinds of services are services available to the environment end-users, while

the third provide the infrastructure needed to realize the end-user services.

The services provided within the SDE are realized by various components. Usually a

component may provide more than one service through its interface to human users or oth-

er components. Based on this description we can define four kinds of components:

• Software development components (i.e. the tools used for analysis, design, coding,

testing, etc. of the produced artifacts).

• Environment specification components (i.e the meta-environment).

• Data and meta-data management components (i.e. DBMS facilities).

• Environment and process control components (e.g. a process engine).

Subsequently we introduce architectural concepts with which we describe services as well

as the components that provide them.

2.2 The Broker/Services Model for Modeling PCDEs

In SEAMAN, we want to support the customization of PCDEs for concrete projects and

the flexible definition of PMs in terms of the PCDE-architecture. In order to model PCDE-

architectures we have to allow:

• the modelling of services to be offered by the PCDE,

• the definition of the reactive entities (managers) in the resulting PCDE,

• the assignment of components to services,

• the integration of existing tools into the PCDE,

• the modeling of software processes,

• the enactment of these processes.

www.manaraa.com

Service-Oriented Architecture

 Page 6

SEAMAN uses anextended broker/services architecture model [12] in order to fulfill

these requirements (see Fig. 1 for a simplified meta-schema of the model)

This model provides the facilities to describe the structure of a system, its behavior, and

architectural constraints. It uses an object-oriented approach to system construction, ex-

tended with the possibility to define reactive behavior of the objects2. Its main concepts

are brokers, services, andresponsibilitiesdefined subsequently. A PCDE-architecture is

defined as a collection of brokers operating in various roles, being responsible for provid-

ing services and being able to monitor complex events and react according to predefined

ways. The services provided by brokers can refer to the manipulation of development data

2. The term “reactive behavior” describes the capability of objects to autonomously execute various actions in response
to predefined simple or composite events (not just method calls).

broker

service variable

contains

event

triggers

reacts_to

reaction depends_on condition

Figure 1: Meta-schema of the PCDE description constructs

responsibility

role

contains

has_parameters

part_of_state

realizesorder

service implementation

www.manaraa.com

Service-Oriented Architecture

 Page 7

or to the control and coordination of system components. These integrated services are

thus viewed as a virtual machine encoding software process elements [5] while at the same

time describing the system architecture.

Subsequently, we describe in more detail the concepts we use for the modeling of

PCDEs. An example of their use is presented in section 3.2.

2.2.1 Services

Services model the functionality of system components. They allow a service-oriented

view of the environment abstracting from concrete implementations. A specific service is

provided by one or more brokers (see below) and can be requested by various client bro-

kers. It is specified by its signature and by the reactions of brokers responsible for its pro-

vision (i.e. which react to the service request). The service signature consists of the service

name, its parameters, the possible replies and exceptions its request may cause. We de-

compose relatively high-level service descriptions (service groups) in the reference mod-

els to low-level definition of services in the broker/services model we are using. Thus, at

the lowest level services in our model correspond to the operations of services described in

[9, 17].

2.2.2 Brokers

Brokers represent “reactive” system components, responsible for the provision of end-user

and framework services. We distinguish between three kinds of brokers:internal, external,

and interface brokers. Internal and interface brokers are described by their state, the ser-

vices they are responsible for providing, and their reaction to predefined events (see be-

low). The state of a broker consists of typed instance variables which can be eithersub-

brokers or passive objects. Brokers which have sub-brokers are calledcomposite.Sub-bro-

kers of internal and interface brokers can only be internal or interface brokers themselves.

Broker-specific methods can be defined which may take typed formal parameters and pos-

sibly return a typed result.

Internal brokers represent system components. An example is an object management

system. Interface brokers implement the behavior of system components interacting with

human beings and external tools. A typical example is a session manager representing the

www.manaraa.com

Service-Oriented Architecture

 Page 8

interaction of a user with the system. External brokers are blackboxes for which the inter-

nal state, methods and reactions do not have to (but can) be defined. They model the be-

havior of human users and external tools, and can request services from other external

brokers as well as from interface brokers.

Brokers and their sub-brokers form a component hierarchy with predefined visibility of

services. Brokers can directly request services from their siblings, but sub-brokers com-

municate with their parent’s environment through their parent brokers. This means that we

need different service request operations to forward requests to siblings within the same

broker, to children of a broker or to siblings of the parent broker.

2.2.3 Roles

Roles specify the responsibilities of brokers in various situational and organizational con-

texts. To achieve this, a broker definition can contain a set of role specifications. Each role

specification consists of state variables, methods, and production rules. There may howev-

er be state variables, methods, and production rules (see below) which are role-indepen-

dent, i.e. common to all roles of a broker. These may be defined outside any particular role

and may be used by all the roles of the broker. The concept of roles is needed to model for

example the fact that a person, while being the same physical entity, may be both a design-

er and a reviewer within the same project. For an explanation of why roles are not ade-

quately modelled by using multiple inheritance see [21].

2.2.4 Events

The description of reactive behavior, i.e. of the fact that objects may autonomously react to

the occurrence of specific situations, is achieved by usingevents. Such events can occur

for example due to a sequence of broker actions within a process, or when specific points

in time are reached. In order to describe events occurring during the operation of a PCDE,

we distinguish between a number ofevent types. In our architectural model we useprimi-

tive event types which are a modified subset of those defined in [11]:

• Service request events explicitly raised by clients through special request operations

(see below). Each service request is accompanied by a list of actual parameters and a

synchronization mode, evaluated by the service provider.

www.manaraa.com

Service-Oriented Architecture

 Page 9

• Value events are related to the modification of an object value. This allows among oth-

ers the monitoring of the state of the repository. Such events are defined for update op-

erations on object attributes and take place before or after the operation that updates the

value of the object is performed.

• Method events are bound to the execution point of a specific method. Their occurrence

point is specified as being just before or immediately after (i.e. directly before the meth-

od returns to its caller) method execution.

• Time events occur when a particular point in time is reached. They are specified either

absolutely (by giving a clock-time), as intervals, relatively to another event, or as peri-

odic events.

Composite events are defined by combining primitive events by means of constructors:

conjunction, sequence, disjunction, closure, andnegation. For an exact definition of the

semantics of these constructors, see [11].

2.2.5 Production Rules

Production rules define the reaction of brokers (eventually within the context of one of

their roles) to specified external events of various types. They have a system-wide unique

name and consist of an event clause, a condition clause which guards the execution of their

action part, and an action part. It is possible that more than one rule reacts to the same

event within one broker (role). A partial ordering of rule execution can be defined by using

a precedence clause. It is important to note that a precedence order has to be defined in

case the action part of a rule affects the condition part of another one, therefore influencing

rule execution semantics.

2.2.6 Broker Operations

The production rules of a broker or its role define its behavior in response to an external

event. In the action part of these rules, various broker-specific methods or predefined oper-

ations may be performed. The predefined operations can be used by all brokers to define

service interactions and are described in the following paragraphs.

The request , requestup and requestdown operations generate a service request

event. Their parameters are the service name, service parameters, and a request mode (syn-

www.manaraa.com

Service-Oriented Architecture

 Page 10

chronous or asynchronous). A synchronous request implies that the service provider must

give a reply before he performs any further action. The difference between the three oper-

ations is the scope of their validity. Therequest operation is visible only to siblings of the

broker requesting the service. Therequestdown operation is used to propagate the service

request to sub-brokers of a broker executing this operation. Finally therequestup opera-

tion has the opposite effect and serves for passing a service request to siblings of the parent

broker. We note that the last two operations are not exactly symmetric. Suppose for exam-

ple a broker A has as its siblings brokers B and C and as its children brokers AA and AB.

AB is responsible for providing the service S1. If B requests S1 by performingre-

quest(S1), then A must performrequestdown(S1) to inform its children of the request.

Now suppose AB needs a service S2 provided by C. Then once AB performsrequest-

up(S2) , A and its peers may catch the service request. Of course this assumes some

knowledge on the part of AB about the responsibilities of its siblings.

The reject operation can be performed as a reply to a service request when the broker

is not able to offer the service, due to its internal state at the moment it caught the request.

Its parameters are the rejected service name and an optional status message.

The reply operation is used to inform clients about the results of a service request. Its

parameters are the name of the requested service and variables which contain the results of

the provided service.

The operationsblock andresume are used to temporarily suspend and resume the exe-

cution of a reaction to an event. Their parameters are the name of the suspended and re-

sumed service, respectively.

Theexception operation is used to signal the occurrence of a situation with which the

system cannot cope through the normal execution flow. Its parameter is the name of an ex-

ception. We assume that exceptions are forwarded to successively higher levels of the ar-

chitecture until an exception handler defined at some level catches this particular

exception.

www.manaraa.com

The SEAMAN Architecture

 Page 11

3 The SEAMAN Architecture

Based on the architecture model described in the previous section, we now turn to the ar-

chitecture of the SEAMAN environment (Fig. 2) which provides the facilities for the con-

struction of PCDEs and their subsequent initialization and operation.

SEAMAN consists of a meta-level and an operational level. At the meta-level, PCDEs

and their PMs are defined (in terms of brokers/services), subsequently initialized and man-

aged at run-time. The PCDE-manager is responsible for writing and modifying broker

definitions and tailoring the PCDE to the needs of specific projects. At this level PCDE ar-

chitectures and PMs are explicitly represented and can be manipulated, thus introducing a

PCDE life-cycle and enabling the administration of various PCDE instances. At the opera-

tional level, we encounter PCDE instances used for “real” software production. These en-

vironments contain a database and a rulebase implementing the various functional and

behavioral aspects of the PCDE which is also used for storage of the created software arti-

facts. Various external tools can be attached to the environment through interface brokers.

In each PCDE a special broker called theglobeis responsible for coordinating the top-lev-

PCDE instance

Tool Tool

Database

Broker Definition
Language

Compiler

Administration
tools

active DBMS

...

Figure 2: The architecture of SEAMAN

 meta-level operational level
PCDE-Manager

Software Developers

Globe

Rulebase

ObjectManager

Interface Interface

...

www.manaraa.com

The SEAMAN Architecture

 Page 12

el brokers of the various subsystems (e.g. ObjectManager) and the interface brokers. This

consists primarily in routing requests to responsible brokers by sending them an appropri-

ate message. As noted before tools can be external entities and as such cannot contain sub-

brokers.

3.1 Specification of PCDEs and Process Models in SEAMAN

The construction of single PCDEs, including process modeling, is the cornerstone of the

SEAMAN environment. The entire construction is quite complex and is therefore de-

scribed here on a rather abstract level.

The PCDE (including its behavioral aspect - the PM -) is specified in terms of brokers

and services in an iterative process. The analysis of specific requirements yields service

definitions realizing the functionality of the PCDE. These services are then assigned to re-

sponsible brokers. During this step, new brokers are added to the architecture whenever

needed. The result of this first construction phase is an initial PCDE-architecture, which

can then be completed iteratively. Extensions of this architecture may be required in two

cases:

• when realizing other services results in the need for additional new services, and/or

• when decisions to realize a service in a particular way result in additional service re-

quirements or architectural constraints.

The PCDE-manager defines the component architecture as a collection of top-level bro-

kers. Internal brokers are defined which are responsible for the framework services (e.g.,

object management, integrity enforcement). These services are less likely to change

among different PCDEs and thus provide a high reuse potential. Internal top-level brokers

can contain sub-brokers or passive objects. For end-user services usually interface and ex-

ternal brokers are defined. Especially, human participants and generally all components for

which the behavior cannot be exactly predefined are represented by external brokers. What

is important is their interaction with interface brokers. External brokers are used primarily

to ensure the completeness of the definition of the services provided by the system itself.

The PCDE-architecture is then extended to realize the desired PM. Particularly, note

that the PM defines the behavioral aspect of the PCDE, and is defined as part and in terms

www.manaraa.com

The SEAMAN Architecture

 Page 13

of the PCDE-architecture. The PM is specified by adding role definitions to the existing

brokers. Each such role defines a context-dependent behavior according to the state of the

development process and the broker itself. This behavior is implemented in terms of pro-

duction rules.

The result of the construction is an operational PCDE. Enactment of a concrete soft-

ware process is implemented by the collection of brokers. The defined PM can be enacted

after the initialization of the PCDE.

3.2 The ISWP6 Example

We are going to present an example of the use of the modeling concepts previously pre-

sented. It is inspired by the process modeling problem presented in [15]. Extensions were

made to this problem in order to present how automatic system components are described.

Because of the limited space we will just present a small part of the model describing the

structure of some of the components involved and part of the behavior of selected brokers.

The problem consists of the design, coding, testing and management of a local change

to a software system due to a change in the requirements. The whole process is simplified

by the assumptions that only one module is affected and that there are no delays, con-

straints or conflicts due to resource unavailability. The process is divided into eight com-

ponent tasks: scheduling and assignment, design modification, design review, code

modification, test plan modification, test package modification, unit testing, and progress

monitoring. Information that is available to all tasks are the change of requirements, the

notification of the task assignments and their scheduled dates, the notification of the re-

vised task assignments and their scheduled dates, and the notification of the completion of

each step. Tasks are assigned to various human participants which work on them either

alone or in groups. As already mentioned, a small part of the structure and behavior of par-

ticipating brokers is shown here. This consists of the definition of the compositeProject-

Team broker, theDesigner broker in its role within the project team and the interaction

www.manaraa.com

The SEAMAN Architecture

 Page 14

with theSessionManager representing the user interface of the designer during a coding

session. Fig. 3 presents a schematic illustration of the broker structure of the example.

TheProjectTeam broker is defined below through its state variables and two rules de-

scribing its reaction to various events. When it receives the request for change and the

change authorization event occurs, these are passed down to its components. It will also

forward an eventual cancellation of the change request. This broker serves as the enclosing

broker for the whole process and thus has as its state variables all other sub-brokers.

--
EXTERNAL BROKER ProjectTeam

rt: ReviewTeam
tt: TestTeam
de: DesignEngineer
qe: QAEngineer
pm: ProjectManager
cc: Compiler
ed: Editor
dc: DocCabinet
dm: DocManager
ta: TestAnalyzer
sm: SessionManager

// react to initial request for change by requesting a scheduling service
// and propagating the request to sub-brokers

ProjectManager.ProjectTeam

ProjectTeam

QAEngineer.ProjectTeam

Designer.ProjectTeam

ReviewTeam

QAEngineer.ReviewTeam

Designer.ReviewTeam

SWEngineer.ReviewTeam

SWEngineer.ReviewTeam

TestTeam

QAEngineer.TestTeam

Designer.TestTeam

SessionManager.ProjectTeam

DocManager.ProjectTeam

DocCabinet.ProjectTeam

TestAnalyzer.ProjectTeam

Figure 3: Structure of the brokers used to model the ISWP6 software process example. Interface brokers
are represented as round boxes, external brokers as plain boxes, and internal brokers as a double box.
Composite brokers are represented as dashed boxes. The role of brokers is given in postfix notation.

Editor.ProjectTeam

Compiler.ProjectTeam

www.manaraa.com

The SEAMAN Architecture

 Page 15

DEFINE Develop-Change
ON change-and-test(reqchange:Document) AND

change-authorized(authorization:Verbal)
DO requestdown(change-and-test,reqchange,ASYNC)

requestdown(change-authorized,authorization,ASYNC)

// cancel change effort
DEFINE RULE Cancel-Change
ON cancel-change
DO requestdown(cancel-change,ASYNC)

END
--

TheDesigner broker models the behavior of a designer responsible for modifying the

code, compiling it, and releasing it for test as soon as it compiles without errors. We just

present here three production rules defining its reaction to the code modification service

request in its role as member of the project team. A complete definition would include, in

addition to other activities for this role, the definitions of its role in the review and test

teams.

--
EXTERNAL BROKER Designer

ROLE IN ProjectTeam

// react to code modification service request, coding may begin sometime af-

ter

// the task has been assigned or at the latest after design approval
DEFINE RULE Modify-Code-1
ON modify-code(codetask:EMail) AND

change-development-and-test(reqchange:Document)
DO DEFINE EVENT start-coding(date)

// designer may start coding whenever he has decided...
DEFINE RULE Modify-Code-2
ON start-coding
DO request(start-edit-session,”source code”,ASYNC)

... // edit source
request(end-edit-session,”source code”,ASYNC)
request(do-compile,”source code”,ASYNC)

// but at the latest when design has been approved
DEFINE RULE Modify-Code-3
ON NOT(start-coding) BEFORE

design-approved(outcome:EMail,defcts:EMail,effrt:EMail,design:Document)
DO request(start-edit-session,”source code”,ASYNC)

... // edit source
request(end-edit-session,”source code”,ASYNC)
request(do-compile,”source code”,ASYNC)
DELETE EVENT start-coding

...
END

www.manaraa.com

Using an Active Object-Oriented DBMS in SEAMAN

 Page 16

Finally, theSessionManager interacts with theDesigner by starting editor and com-

piler sessions. Note that the two brokersEditor andCompiler are not the actual tool com-

ponents but only interface brokers. These call the appropriate external tools with the

needed parameters. The tools are not called directly by theSessionManager , a fact which

provides the possibility of customizing them for a specific role (e.g. pass different parame-

ters to a compiler according to the context of its use).

--
INTERFACE BROKER SessionManager

ROLE IN ProjectTeam

scr: Screen
session: Session

// start interactive editor session
DEFINE RULE Start-Edit-Session
ON start-edit-session(fn:Name)
DO request(edit-file,fn,SYNC)

session=scr->newSession(fn)
reply(start-edit-session)

// end interactive editor session
DEFINE RULE End-Edit-Session
ON end-edit-session(fn:Name)
DO scr->closeSession(fn)

// start compilation
DEFINE RULE Start-Compilation
ON do-compile(fn:Name)

request(compile-file,fn,SYNC)
request(compile-end,result,ASYNC)

END
--

4 Using an Active Object-Oriented DBMS in SEAMAN

A powerful realization platform is desired for the construction and operation of SEAMAN

PCDEs. In this section we identify specific requirements, present the chosen platform, and

show how it is used for PCDE construction.

4.1 Requirements for the Realization Platform

The realization platform used for SEAMAN has to fulfill a number of requirements, stem-

ming from its use both as construction framework and operational environment. The re-

www.manaraa.com

Using an Active Object-Oriented DBMS in SEAMAN

 Page 17

quirements for the construction framework include management and persistent storage of

the PCDE definitions and their PMs, and support for the definition of reactive behavior.

The requirements for its operational use include persistent storage of produced artifacts,

transaction management and concurrency control, automatic recovery, and the realization

of reactive behavior.

In order to meet these requirements, we use an active object-oriented DBMS as the re-

alization platform. ADBMSs extend passive object-oriented DBMSs by supporting the re-

active behavior of stored objects through rules defining reactions to predefined situations.

Situation monitoring can be done in the aDBMS instead of in polling applications. “Active

objects” are able to automatically react to changes in their internal state and to external

events.

For the implementation of SEAMAN we need an aDBMS which provides the mecha-

nisms to implement both the static and the dynamic aspects of a PCDE. The static part re-

fers to the implementation of PCDE components and the storage of the software artifacts

developed. Both are implemented as database objects. The dynamic behavior refers to the

enactment of PMs (by brokers). The aDBMS rule mechanism is used to implement the re-

active part of brokers. In order to achieve fine-grained process enactment, reactive behav-

ior has to be defined at an arbitrarily fine level [5] (i.e. at the level of simple objects). Rules

are also used to express consistency constraints [13]. Finally, the aDBMS is used for the

implementation of application programs operating on the stored data. These programs are

used among other things, for the realization of parts of the meta-level of SEAMAN.

In SEAMAN we use the aDBMS SAMOS [11] which is based on the object-oriented

DBMS ObjectStore and permits the specification of reactive behavior by Event-Condition-

Action (ECA) rules consisting of an event, a condition predicate and an action part. Rules

can be attached to classes (class-internal) or can beclass-external. Events in SAMOS can

be primitive or composite. The condition part of SAMOS ECA-rules is a function ex-

pressed in the DML of the underlying ooDBMS and returns a boolean value.

SAMOS uses a nested transaction model. It also provides nested rule execution. During

the execution of a rule, new events may occur as a result of actions performed and trigger

www.manaraa.com

Using an Active Object-Oriented DBMS in SEAMAN

 Page 18

the execution of further rules. The execution order of multiple rules defined for the same

event can be specified through precedence relations among rules.

4.2 Mapping of Brokers to SAMOS Objects and Rules

In this section we are going to describe how SAMOS is used to realize instances of

PCDEs. This step comprises the realization of a concrete PCDE consisting of a set of bro-

ker definitions. It is done by compiling the broker definitions thus mapping them to ele-

ments of the SAMOS model and initializing the run-time environment. The initialization

includes the creation of a new database and rulebase as well as the execution of broker ini-

tialization methods.

The principles of the mapping of the PCDE definition on to the model provided by SA-

MOS are the following:

• Each instance of a PCDE has its own SAMOS database. This is needed in order to

achieve an isolation of possible side effects between the process models used in the dif-

ferent PCDEs. Thus after the definition of the PCDE a new database is created contain-

ing the production rules and the data pertaining to it. It exists for the whole duration of

the process.

• Internal brokers and interface brokers are mapped to classes. The production rules for a

role are class internal ECA-rules. The different roles of a broker are expressed by add-

ing a role-dependent state variable in each class. Role transitions are thus easily imple-

mented.

• External brokers are also mapped to classes which however do not have any class inter-

nal ECA-rules. Their rules are just defined for checking the completeness of the specifi-

cation of automatic and interface brokers.

• Consistency constraints are specified using the programming-by-contract [16] paradigm

and are also transformed to ECA-rules through the mapping process described in [13].

Object-level and extension-level invariants can be defined.

www.manaraa.com

Related Work

 Page 19

5 Related Work

Two aspects of SEAMAN are considered in this comparison to related work: the underly-

ing object model and the provided event type support. These two aspects are important

when considering the degree of control and data integration provided in PCDE architec-

tures.

ADELE -TEMPO [3, 8] is a PCDE consisting of two layers: a custom-made database

based on an extended entity-relationship data model (providing objects and relationships

between them) and a software process description layer where processes are modelled as

an aggregate of object roles (customizing object behavior) to which constraints can be at-

tached. External tools can only be attached by using the Unix shell interface. The expres-

siveness of the data model used is limited compared to SEAMAN and only simple method

events can be defined in an external to the database layer.

ALF [19] is similarly to our approach a meta-environment for the creation of process-

centered CASE environments supporting different life-cycle models and design and devel-

opment methods. It is based however on a structurally object-oriented [7] object manage-

ment system [18] which conceptually separates objects from their functionality.

Production rules defining automatic reactions to specific situations arising during the soft-

ware process have to be executed by a separate interpreter serving as the communication

layer between the object manager and the user interface. Only a limited set of events relat-

ed to database operations can be defined (read, create, update, lock, etc.). Operators, to

which pre- and post-conditions can be attached, are used to describe various activities per-

formed by external tools.

EPOS [14] is a multi-user kernel software development environment providing process

modeling and configuration management facilities. It has a layered architecture consisting

of a common user interface to various programming tools, to an activity manager and a

planner. Process artifacts are represented by entities (objects) with mutual relationships.

The basic concepts used for PM are activities and products, which are described as types

in an extension of the basic data model. EPOS is based on a structurally object-oriented

DBMS. In contrast to SEAMAN, reactive object behavior can only be provided by using a

special interpreter and is not an inherent part of the database objects.

www.manaraa.com

Related Work

 Page 20

Marvel [4] is a rule-based PCDE. Production rules are used for process modeling. Mar-

vel has a fixed client-server based architecture and uses a proprietary transaction manager

and object manager. The data model provided by the object manager is structurally object-

oriented providing only aggregation, generalization/specialization and links between ob-

jects. The implicit representation of enactable process models and executing processes

makes it difficult to change them or inspect them.

In SPADE [2] PMs are described in a Petri net based language called SLANG. The

SPADE environment is divided into the user interaction environment, the process enact-

ment environment in which process engines concurrently execute activities of the process

model, and a filter responsible for the communication of the two environments. Special

transitions for which only the input and output has to be known are used to model user in-

teraction with tools. The type system of SLANG permits the modelling of data produced,

used, and manipulated in a software process. Meta-types allow the manipulation of PMs

themselves. SPADE resides over the aDBMS NAOS [6] which compared to SAMOS sup-

ports a smaller set of event types (user-defined, method and program execution events) and

no composite events. Rules for user-notification, application access-logging, tool commu-

nication etc. can be modified, it is not yet clear however how they are exactly used. The ar-

chitecture of SPADE is predetermined, only the used PM can be modified.

Summarizing, some of the concepts we use exist in previous systems. However in SEA-

MAN a unifying concept of development architectures, processes and their products is

provided. SEAMAN uses as its realization platform a fully object-oriented active DBMS

simplifying the development of customized PCDEs significantly. Most existing systems

use structurally object-oriented DBMSs. By using a fully object-oriented DBMS we have

the additional advantage of being able to easily integrate passive with reactive components

representing their behavior and structure in a uniform way.

www.manaraa.com

Conclusions and Future Work

 Page 21

6 Conclusions and Future Work

We have described a concept for the definition and construction of flexible PCDEs. An im-

portant aspect of our work is the use of the extended broker/services model for the defini-

tion of PCDE architectures. The concepts we use allow a structural and behavioral

decomposition of the system by using composite brokers, they support information hiding,

modularity and extensibility of the architecture. The generation of an instance of a con-

crete PCDE is largely automated and adaptation of the process model used is supported.

Data, tool, and control integration [5] is supported by the use of a powerful aDBMS as the

realization platform. The aDBMS offers the facilities for process modeling and enactment,

process and artifact management, and consistency enforcement.

Although simpler active-mechanism like approaches have been used in other projects

the use ofactive object-oriented database technology as a unifying factor has not yet been

explored. By using object-oriented technology, we can associate passive functional behav-

ior with objects providing a basis in the data model to access services through object refer-

ences. This results in a clean integration concept. By using active mechanisms we specify

the reactive behavior of software components and various consistency constraints. In addi-

tion to a large spectrum of primitive event types including various types of time events (in-

tervals, periodic, etc.) we can also exploit the expressive power of composite events. Thus

the aDBMS provides the functionality of a process engine.

We expect that specifications (mainly for process models) canevolve during the

progress of a software engineering project. Once a process model has been defined it may

be necessary to modify it even if the process is already running, in case requirements have

changed or the initial specification has turned out to be inappropriate. Of course, the rule

base implementing the process model also evolves in such a case. Hence, the questions are

which modifications can be performed on a rule base without compromising its consisten-

cy, and how the rule base has to be modified. Rulebase evolution is also still an open ques-

tion in database research and is a part of our future research.

www.manaraa.com

References

 Page 22

7 References

1. M. Atkinson, F. Bancilhon, D.J. DeWitt, K.R. Dittrich, D. Maier, S.B. Zdonik:The Ob-
ject-Oriented Database System Manifesto (a Political Pamphlet).In Proceedings 1st
Int’l. Conf. on Deductive and Object-Oriented Databases, 1989.

2. S. Bandinelli, M. Braga, A. Fuggetta, L. Lavazza:The Architecture of the SPADE-1
Process-Centered SEE. In B.C. Warboys (Ed.),Software Process Technology, Proc.
3rd European Workshop, Villard de Lans, 1994.

3. N. Belkhatir, J. Estublier, W.L. Melo:Software Process Model and Workspace Control
in the Adele System.In L. Osterweil (Ed.),Proc. 2nd Int’l. Conf. on the Software Pro-
cess,Berlin, 1993.

4. I.Z. Ben-Shaul, G.E. Kaiser, G.T. Heineman:An Architecture for Multi-User Software
Development Environments. In H. Weber (Ed.),Proc. of the 5th ACM SIGSOFT Sym-
posium on Software Development Environments, Virginia, 1992.

5. A.W.Brown, P.H.Feiler, K.C. Wallnau:Past and Future Models of CASE Integration.
In Proc. Int. Conf. Computer Aided Software Engineering, Montreal, 1992.

6. C. Collet, T. Coupaye, T. Svensen:NAOS Efficient and modular reactive capabilities
in an Object-Oriented Database System.In J. Bocca, M. Jarke, C. Zaniolo (Eds.),
Proc. 20th Int’l. Conf. on Very Large Data Bases, Santiago, September 1994.

7. K.R. Dittrich, Preface. In K.R. Dittrich (Ed.),Advances in Object-Oriented Database
Systems, Proc. of 2nd Int’l. Workshop, Bad Munster am Stein-Ebenburg, LNCS 334,
Springer 1988.

8. J. Estublier, N. Belkhatir, M. Ahmed-Nacer, W.L. Melo:Process centered SEE and
Adele. In G. Forte, N.H. Madhavji, H.A. Muller (Eds.),Proc. 5th Int’l. Workshop on
Computer Aided Software Engineering, Montreal, 1992.

9. European Computer Manufacturers Association, National Institute of Standards and
Technology:Reference Model for Frameworks of Software Engineering Environments.
Technical Report ECMA TR/55, NIST Special Publication 500-211, August 1993.

10.A. Finkelstein, J. Kramer, B. Nuseibeh:Software process Modelling and Technology.
Research Studies Press, Taunton, 1994.

11. S. Gatziu, K.R. Dittrich:Detecting Composite Events in Active Database Systems Us-
ing Petri Nets. In Proc. 4th Int’l. Workshop on Research Issues in Data Engineering:
Active Database Systems,Houston, February 1994.

12.A. Geppert:Methodical Construction of Database Management Systems. Doctoral
Dissertation, University of Zurich, 1994.

13.A. Geppert, K.R. Dittrich:Specification and Implementation of Consistency Con-
straints in Object-Oriented Database Systems: Applying Programming-by-Contract.
In Proc. Conf. Datenbanken in Büro, Technik und Wissenschaft (BTW), Dresden,
March 1995.

www.manaraa.com

References

 Page 23

14.L. Jaccheri, J.-O. Larsen, R. Conradi: Software Process Modeling and Evolution in
EPOS. InProc. 4th Int’l. Conf. on Software Engineering and Knowledge Engineering,
Capri, 1992.

15. M.I. Kellner, P.H. Feiler A. Finkelstein, T. Katayama, L.J. Osterweil, M.H. Penedo, D.
Rombach:ISWP-6 Software Process Example. In Proc. 6th Int’l. Software Process
Workshop, IEEE, 1991.

16. B. Meyer:Object-Oriented Software Construction.Prentice-Hall, New York, 1988.

17.NCGR Project Support Environment Standards Group, National Institute of Standards
and Technology, Software Engineering Institute -CMU:Reference Model for Project
Support Environments (Version 2.0). Technical Report NIST SP 500-213, CMU-SEI-
93-TR-23, November 1993.

18. F. Oquendo, G. Boudier, F. Gallo, R. Minot, I. Thomas:The PCTE+ OMS: A Distrib-
uted Software Engineering Database System for supporting Large-Scale Software De-
velopment Environments.In Proc. 2nd Int’l. Symposium on Database Systems for
Advanced Applications, Tokyo, April 1991.

19. F. Oquendo, J.-D. Zucker, P. Griffiths:A Meta-CASE Environment for Software Pro-
cess-centred CASE Environments. In Proc. 4th Int’l. Conf. on Adavnced Information
Systems Engineering, Manchester, May 1992.

20.B. Peuschel, W. Schäfer:Concepts and Implementation of a Rule-based Process En-
gine. In Proc. 14th Int’l. Conf. on Software Engineering, Melbourne, 1992.

21.J. Richardson, P. Schwarz:Aspects: Extending Objects to Support Multiple, Indepen-
dent Roles. ACM SIGMOD, May 1991.

